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1. Motivation @ .

Nonnegative matrix factorization (NMF) has been widely
applied in many domains. In document analysis, it has
been increasingly used in topic modeling applications,
where a set of underlying topics are revealed by a low-
rank factor matrix from NMF.
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1. Motivation @ Vo

Limitations of Traditional NMF

* It is often the case that the resulting topics give only
general topic information in the data, which tends not
to convey much information.

* Such results may give dominant topics that are highly
redundant with each other.

Contributions of L-EnsNMF

* It develops an ensemble approach of nonnegative
matrix factorization based on a gradient-boosting
framework. This novel approach can extract high-
quality local topics from noisy documents dominated
by a few uninteresting topics.
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Toy Example:

Fig. 1 shows the sampled topics from those research papers in data mining
domains] containing keywords ‘dimension’ or ‘reduction.” Fig. 1(a), where
standard NMF returns ‘dimension’ or ‘reduction” as dominant keywords in
most of the topics, renders the corresponding topics redundant, thus less
informative.

By contrast, L-EnsNMF can reveal not only dominant topics but also minor
but meaningful, important topics.
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(b) Our approach
Fig. 1: Topic examples extracted from research papers in the data mining area published in 2000 - 2008



2. Method

Gradient Boosting

Core Principle :
In the iterative process, the RESIDUE of last fitting
will be the objective value of this fitting step

Objective value in step m

Current model output

Objective value in step m+1 / /

Fri1(z) = Fu(z) + h(z) =y

AN

Ground truth value



2. Method

One important property of matrix multiplication
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2. Method

. . . 2
Objective function of T | X - WH|%.
traditional NMF S ‘
q 2
min X — Z WwOH®|
W@, H#>0,i=1,- ,q ;
=1 F
Objective function of (W("'), H(i)) _ argmin H RO _w HH
L-EnsNMF W,H>0
The main difference between L-EnsNMF (4) X if 2=
and the (single-stage) standard NMF lies RY = |: R(z—l) W(z—l) H(z—l):| if 4>9
in the approach adopted to solve W and +
H. That s, in standard NMF, all of W
and H are optimized simultaneously R(i) _ [ X — W(l) H(l)] W(Q} H(Q}
within a single optimization framework + +

using various algorithms such as a

gradient descent _W(i—ljﬂ(i—l)] 1
+
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(W(“), H(”) — arg min HRE”) _ WHHF.

W,H>0
Each sub-problem of solving W () H® in the
equation can be represented-as E
. 2 : B 2 — X
min )Y — BG|y = Z min )y, - Bgll; (D vy | = B
where H is obtained by setting B = W, G = H, and

W is obtained by setting B = H, G = W, and ¥ = X*,

and g, and y, are the i-th columns of G and Y, respectively.

Let us consider each problem in the summation operator and

rewrite it as I E
X

. 2
min [ly — B>, (12) 2

which is a nonnegativity-constrained least squares problem. 920
Here, the elements of the vector g can be partitioned into the
one containing zeros and the other containing strictly positive Y

values, and let us call these sets of dimension indices of the

activel and the [passive sefs as Z, and 7, respectively. Once we ] I:l
fully know 7, and Z,, for optimal solution of Eq. (12), such X

an optimal solution is equivalent.to the solution obtained by z B gi
solving an unconstrained least squares using only the passive g;=0
set of variables [20], i.e.,

min ||B(:, Z,) g; (Zp) — y”é '

I
Passive set Ip
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X H The proposed model applies a greedy algorithm
- gzo B Yi to exhaustively search the passive set ; which
iz p?
- require a large time complexit
y; "~ g g pieXIly
Passive set I,
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Yi - = -
W., W., W.,
H. Ha. in this paper, we adopt this
il 1:2, - . 34 " exhaustive search approach for an

optimal active/passive set
partitioning as our individual learner
gi=0 at each stage, which maintains the
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small value of Xs when solving NMF

W. 12 W34 at each stage.



4. Local Weighting LT

To further accelerate this process and enhance the diversity of local topics.
the paper perform local weighting on the residual matrix R(i) so that the

explained parts are suppressed while the unexplained parts are highlighte
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Fig. 2: Overview of the proposed ensemble approach




5. An Inexorable Issue
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(a) Standard NMF

(b) Deflation-based NMF

As seen in Fig. 3(a), the column vectors of W generated
from standard NMF in Eq. (2) successfully reveal the two
components of the Gaussian mixture data. However, in the
deflation approach shown in Fig. 3(b), the basis vector at the
first stage, W) e R?,_Xl, is computed as a global centroid and
then at the second stage, w@ e Rﬁ_Xl , which is computed on
the residual matrix, is shown as the vector along a single axis,
y-axis in this case. As a result, the two bases found by the
deflation-based NMF approach fail to identify the true bases.
This is clearly the case where the deflation approach does not
work with NMF.
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In the case of text data, however, where
the dimension is high and the matrix is
highly sparse, it claims that such a
deflation method can work as well as

1 T T \ .
05 “_I ‘ H ‘ M or even better than standard NMF.
Mlle [ gl
2 3 4

1

Weights

(a) Ground truth The reason why the deflation-based
2 1 | ] | | NMEF works surprisingly well with
§’ 05 Il I I 1 sparse high-dimensional data, e.g., text
0 D ﬂ J data, is because their original
(b) Standard NMF dimensions, e.g., keywords in text data,
. with large values are unlikely to
%0 % I I ‘ II ‘ I overlap among different column
= |_|r| H vectors of W due to its sparsity. In this

case, the deflation- based NMF can be
suitable by finding these dimensions or
keywords with large values in one
vector at a time.

(c) Deflation-based NMF
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we introduce a novel ensemble approach of NMF for high-
quality local topic discovery via a gradient boosting
framework and a systematic local weighting technique. The
proposed method is especially useful in disclosing local
topics that are otherwise left undiscovered when using
existing topic modeling algorithms.

As future work, we can add some constraint terms to the
factorization framework, and also to add some prior
information to steer the decomposition in a user-driven
manner
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